Maximal von Neumann subalgebras arising from maximal subgroups
نویسندگان
چکیده
Ge asked the question whether $LF_{\infty}$ can be embedded into $LF_2$ as a maximal subfactor. We answer it affirmatively by three different approaches, all containing same key ingredient: existence of subgroups with infinite index. also show that point stabilizer for every faithful, 4-transitive action on an set give rise to von Neumann subalgebras. Combining this known results constructing highly transitive actions, we get many subalgebras arising from
منابع مشابه
Titles and Abstracts of Talks Title: Derivations on Von Neumann Algebras and L 2 -cohomology Title: Maximal Amenable Von Neumann Subalgebras Arising from Amenable Subgroups
Consider a maximal amenable subgroup H in a discrete countable group G. In this talk I will give a general condition implying that the von Neumann subalgebra LH is still maximal amenable inside LG. The condition is expressed in terms of H-invariant measures on some compact G-space. As an example I will show that the subgroup of upper triangular matrices inside SL(n,Z) gives rise to a maximal am...
متن کاملMaximal Nonfinitely Generated Subalgebras
We show that “every countable algebra with a nonfinitely generated subalgebra has a maximal nonfinitely generated subalgebra” is provably equivalent to ’1-CA0 over RCA0.
متن کاملCounting Maximal Arithmetic Subgroups
for absolute constants C6, C7. This theorem (almost) follows from [EV, Theorem 1.1], the only point being to control the dependence of implicit constants on the degree of the number field. We refer to [EV] for further information and for some motivational comments about the method. In the proof C1, C2, . . . will denote certain absolute constants. A.2. Let K be an extension of Q of degree d ≥ 2...
متن کاملMaximal Subalgebras of Matrix Lie Superalgebras
Dynkin’s classification of maximal subalgebras of simple finite dimensional complex Lie algebras is generalized to matrix Lie superalgebras, i.e., the Lie subsuperalgebras of gl(p|q).
متن کاملMaximal Ideals in Subalgebras of C(x)
Let X be a completely regular space, and let A(X) be a subalgebra of C(X) containing C*{X). We study the maximal ideals in A(X) by associating a filter Z(f) to each / 6 A(X). This association extends to a oneto-one correspondence between M(A) (the set of maximal ideals of A(X)) and ßX. We use the filters Z(f) to characterize the maximal ideals and to describe the intersection of the free maxima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China-mathematics
سال: 2021
ISSN: ['1674-7283', '1869-1862']
DOI: https://doi.org/10.1007/s11425-020-1671-9